百科网

首页 > 生活常识 > 生活经验

生活经验

物理类可以选什么专业

生活经验佚名2023-04-20

物理类的专业主要有理论物理、微电子学、凝聚态、核物理、生物物理、粒子物理、微电子学与固体电子学、物理电子学、应用物理、光学、物理学、材料物理专业、声学专业、力学、分析力学、量子信息科学、系统科学与工程、等离子体物理学、粒子物理与原子核物理、原子与分子物理、激光物理学、生物物理学、固体物理学等。

物理学专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。

主干课程:微积分学、拓扑学、化学、力学、热学、光学、电磁学、原子物理学、数学物理方法、理论力学、热力学与统计物理.电动力学、量子力学、固体物理学、结构和物性、计算物理学入门等。

理论物理

理论物理是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。

微电子

微电子学,是以集成电路设计、制造与应用为代表的学科,是现代发展最迅速的高科技应用性学科之一。学科内容主要涉及集成电路、微电子系统的设计、制造工艺、制造装备和设计软件系统,培养能在微电子及相关领域从事科研、教学、工程技术及技术管理等工作的高级专门人才。

凝聚态物理学

凝聚态物理学是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和规律,从而认识其物理性质的学科。凝聚态物理学是当今物理学最大也是最重要的分支学科之一。

核物理

核物理专业主要通过对原子核物理学、核电子学、核物理实验方法、核技术应用等专业基础知识的学习,掌握核物理专业的基本科学知识和体系,并受到相关专业实验的训练,从而具有良好的数理基础和核物理学科的理论基础,具有较深入的专业知识和熟练的实验技能,能够适应核物理学科各方向发展的基本需要。

粒子物理学

是研究组成物质和射线的基本粒子以及它们之间相互作用的一个物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。

微电子学与固体电子学

是一门新兴的高科技学科,微电子产业是与国民经济发展、人民生活水平提高、巩固国防密切相关的重要产业,是衡量一个国家综合国力的重要标志。近几年来,中国正在大力发展微电子技术,正在上海浦东建设微电子产业基地,大量需要包括集成电路设计、工艺技术、产品开发、应用、测试、封装等各个层次的微电子专业人才。

物理电子学

是电子学、近代物理学、光电子学、量子电子学、超导电子学及相关技术的交叉学科,主要在电子工程和信息科学技术领域内进行基础和应用研究。

近年来本学科发展特别迅速,不断涵盖新的学科领域,促进了电磁场与微波技术、微电子学与固体电子学、电路与系统等二级学科以及信息与通信系统、光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如光波与光子技术、信息显示技术与器件、高速光纤通信与光纤网等,成为下一世纪信息科学与技术的重要基石之一。

应用物理学

应用物理学专业培养具有坚实的数理基础,熟悉物理学基本理论和发展趋势,熟悉计算机语言,掌握实验物理基本技能和数据处理的方法,获得技术开发以及工程技术方面的基本训练,具有良好的科学素养和创新意识。

生物物理学

是物理学与生物学相结合的一门交叉学科,是生命科学和物理的重要分支学科和领域之一。生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。

应用物理学

应用物理学专业培养具有坚实的数理基础,熟悉物理学基本理论和发展趋势,熟悉计算机语言,掌握实验物理基本技能和数据处理的方法,获得技术开发以及工程技术方面的基本训练,具有良好的科学素养和创新意识。

光学

是物理学的重要分支学科。也是与光学工程技术相关的学科。狭义来说,光学是关于光和视见的科学,今天常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线和γ射线的宽广波段范围内的电磁辐射的产生、传播、接收和显示,以及与物质相互作用的科学,着重研究的范围是从红外到紫外波段。它是物理学的一个重要组成部分。

物理学

是研究物质最一般的运动规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。

物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。

材料物理:是一门普通高等学校本科专业,属材料类专业,基本修业年限为四年,授予工学学士学位或理学学士学位。2012年,材料物理专业划入材料类 。

材料物理专业培养适应社会发展需求,具备良好的人文社会科学素养、社会责任感及职业道德,具有扎实的材料物理专业知识与工程技能,具有良好的学习能力、创新意识、安全意识、国际视野和团队合作精神,能够在光电材料与器件等相关领域从事材料结构与性能分析、科学研究、工程设计、技术开发、生产经营与管理等方面工作的高级工程技术人才。

声学

声学是一门跨层次的基础性学科,研究从微观到宏观、从次声(长波)到超声(短波)的一切形式的线性与非线性机械波现象。

力学专业

主要培养具备力学基础理论知识、计算和试验能力,能在各种工程(中从事与力学有关的科研、技术开发、工程设计和力学教学工作的高级工程和科学技术人才。

分析力学

分析力学是理论力学的一个分支,它通过用广义坐标为描述质点系的变数,运用数学分析的方法,研究宏观现象中的力学问题。分析力学是独立于牛顿力学的描述力学世界的体系。分析力学的基本原理同牛顿运动三定律之间可以互相推出。

量子信息科学

量子信息科学是量子力学与信息学交叉形成的。近年来,量子信息学给经典信息科学带来了新的机遇和挑战,量子的相干性和纠缠性给计算科学带来迷人的前景。量子信息科学的诞生和发展,反过来又极大丰富了量子理论本身的内容,深化了量子力学基本原理的内涵,并进一步验证了量子论的科学性。

系统科学与工程

统科学与工程培养具备系统科学与工程的基本理论和专业知识,受到严格的科学实验训练和科学研究能力训练,能在复杂的工业生产系统、经济管理系统、服务系统等领域从事大系统和复杂系统的分析与集成、设计与运行、研究与开发、管理与决策等工作的与国际接轨。

等离子体物理学

是研究等离子体的形成、性质和运动规律的物理学分支学科。等离子体是宇宙中物质存在的主要形式,太阳及其他恒星、脉冲星、许多星际物质、地球电离层、极光、电离气体等都是等离子体。

粒子物理学

研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。又称高能物理学。

在粒子物理学的深层次探索活动中,粒子加速器、探测手段、数据记录和处理以及计算技术的应用不断发展,既带来粒子物理本身的进展,也促进整个科学技术的发展;粒子物理所取得的丰硕成果已经在宇宙演化的研究中起着重要的作用。

原子与分子物理学科

学科多年来紧密围绕国家需求和学科前沿,在原子分子结构、光谱和碰撞理论,原子分子激发态动力学,原子分子激光光谱等方面形成了稳定的研究方向,并开拓了强场原子分子物理,团簇物理等前沿研究方向,对简单原子分子体系和大分子、团簇等复杂体系以及纳米体系开展了系统的研究工作,取得了一些有影响的研究成果,受到国内外原子与分子物理学界的重视。

激光物理

是激光发生的原因、物理机制、与其它物质间相互作用及其应用的物理分支。

生物物理学

是物理学与生物学相结合的一门交叉学科,是生命科学和物理的重要分支学科和领域之一。生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。

固体物理

是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。

主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。

目前物理专业实力超强的6所大学:北京大学,中国科学技术大学,清华大学,南京大学,复旦大学,上海交通大学。