百科网

首页 > 文化教育 > 科学探索

科学探索

普朗克长度为什么是有意义的最小长度?

科学探索万象经验2023-05-08

假设我们要测量到某个物体的距离,我们会用一束激光照射它,然后它会把这束激光反射回来。通过此过程所花费的时间,我们就可以推算得到距离了。但是该距离测量具有不确定性,因为我们只能将光返回的时刻记录在电磁波的一个周期内。对于我们使用的任何波长的光,都会产生大约一个波长的距离不确定性。因此,我们只需要使用非常短的波长就可以获得更高的测量精度。

光子的动量是普朗克常数除以其波长,因此我们可以将光子的动量替换为被测物体的动量不确定性,并将波长替换为被测物体的位置不确定性,再将其重新排列,我们就可以接近海森堡不确定性公式了。再经过适当的推导,我们就能得到1/4π的因子。这是海森堡自己经历过的推导路线,我们将这种思想实验称为海森堡显微镜。

我们现在知道,海森堡不确定性原理不仅仅是测量原理,它也适用于除了位置和动量之外的其他变量对。但我们想重点关注的是,通过不确定性原理公式,我们可以看到普朗克常数代表了我们可以测量的宇宙极限。

空间弯曲的位置不确定性

假设我们正试图以完美的精度测量我们的距离,而不在乎动量。我们不断减少测量光子的波长,这也提高了光子的能量和动量。当我们进一步提高能量时,我们开始注意到一些事情,光子开始产生可观测的引力场。根据著名的爱因斯坦方程,即使光子是无静止质量的,但如果将光子封闭在一个系统中,就会产生我们所谓的有效质量。由此产生的引力场改变了到物体的距离,给距离增加了新的不确定性。

我们可以结合常规海森堡的位置不确定性和空间弯曲的位置不确定性,得到总的位置不确定性。当减少光子的波长时,我们会降低常规海森堡的位置不确定性,但同时也会提高空间弯曲的位置不确定性。不过在一定程度上,总的位置不确定性还是在减少。当光的波长减少到普朗克长度时,这两个不确定性变得相同,并且总的位置不确定性达到最小,这可以从数学上推导出来。

这也就意味着,普朗克长度代表可以测量任何距离的最佳分辨率。它还表示,我们可以有意义地归因于任何事物的最小尺寸。想象一下,我们试图测量一个小于普朗克长度的物体的距离,那么弯曲的时空会改变该尺寸以提供100%的不确定性,因此普朗克长度代表了可测量性的基本极限。

那么,这就产生了一个问题,是否意味着不存在更小的尺寸?答案是,我们目前还不知道。